Неравенство с неизвестной степенью, корнем и логарифмом


Неравенство с неизвестной степенью, корнем и логарифмом

эля0521 эля0521    2   09.07.2021 22:48    2

Ответы

(см. объяснение)

Объяснение:

\sqrt{9-\log_2^2(2x-5)}=2+2^{|x^2-5x+6|}

Введем функции f(x)=\sqrt{9-\log_2^2(2x-5)} и g(x)=2+2^{|x^2-5x+6|}. Про вторую сразу скажем, что g(x)2, но на этом не остановимся. Видим, что в степени у нас модуль, а значит самое маленькое, что мы можем получить - это 2^0=1 при x=2 или x=3. Тогда наименьшее значение этой функции будет равно 3.

Теперь разберемся с f(x). У нас есть квадратный корень, поэтому все значения функции точно \ge0. Но и здесь мы идем дальше. Поменяем временно \log_2^2(2x-5) на букву t. Тогда будет f(t)=\sqrt{9-t^2}. Под корнем парабола, ветви которой направлены вниз, а значит есть наибольшее значение, равное \sqrt{9}=3 при \log_2^2(2x-5)=0, откуда x=3.

Наибольшее значение f(x) равно 3 и достигается при x=3. Наименьшее значение g(x) равно 3 и достигается при x=2 или x=3.

Тогда единственный корень исходного уравнения x=3.

Уравнение решено!

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра