Законопостоянство это если допустим посмотреть на функцию синуса, то можно увидеть, что она болтается вверх-вниз, то выше, то ниже нуля. Она постоянно меняет свой знак. Это пример знакопеременной функции. Известно, что синус болтаясь около нуля принимает значения от -1 до 1. Так вот если синус поднять вверх больше чем на 1 над осью абсцисс, то такая функция будет везде знакопостоянной положительной функцией. Примером такой функции будет y=Sin(x)+2. Она тоже будет болтаться вверх и вниз, но только уже относительно прямой y=2. Аналогично можно получить знакопостоянную отрицательную функцию если опустить синус ниже оси абсцисс больше чем на единицу. Например, y=Sin(x)-2.
Напр. y=x^2+1
Аналогично можно получить знакопостоянную отрицательную функцию если опустить синус ниже оси абсцисс больше чем на единицу. Например, y=Sin(x)-2.