Найти точку максимума функции y=(x+8)^2*e^17-x я нашел производную 2*e^17*(x+8)-1 а дальше, меня напрегает буква е

yaxoroshiy1 yaxoroshiy1    2   13.07.2019 23:40    1

Ответы
123qjfj 123qjfj  19.08.2020 10:13
Решение
Найти точку максимума функции y=(x+8)^2*e^17-x
Находим первую производную функции:
y' = 2 * (x+8) * e¹⁷ - 1
Приравниваем ее к нулю:
 2 * (x+8) * e¹⁷ - 1 = 0
x + 8 = 1/[2*(e¹⁷)]
x = 1/[2*(e¹⁷)] - 8,  1/[2*(e¹⁷)] ≈ 0
x = - 8
Вычисляем значения функции 
f(- 8) = (- 8 + 8)^2*e^17 - 8 = - 8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2 * e¹⁷
Вычисляем:
y''(- 8) = 2 * e¹⁷ > 0 - значит точка x =  - 8 точка минимума функции.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра