Найти стационарные точки функции
f(x)=3x^4-8x^3-6x^2+24x+3
найти точки экстремума
f(x)=x^3+6x^2-15x+4
найти y наименьшее y наибольшее на множестве e
f(x)=2x^3+3x^2-12x+5
e=[-3; 4]

ЭлькаКотикучитсяна5 ЭлькаКотикучитсяна5    1   06.12.2019 05:49    1

Ответы
kkostova kkostova  10.10.2020 18:52

1. f'(x)=(3x⁴-8x³-6x²+24x+3)'=12x³-24x²-12x+24=12x²*(x-2)-12*(x-2)=

(x-2)*(12x²-12)=12(x-2)*(x-1)*(x+1)=0

Cтационарные точки х=2; х=1; х=-1

2. y'=3x²+12x-15=3*(x²+4x-5)=0, по Виета х=-5, х=1.

Для нахождения точек экстремума решим неравенство

3(x-1)*(x+5)>0, методом интервалов.

-51___

+               -             +

Значит, х=1 - точка минимума, а х=-5- точка максимума.

3. f'(x)=(2x³+3x²-12x+5)'=6х²+6х-12=6*(х²+х-2)=0 По Виета х=-2; х=1 оба корня попадают в рассматриваемый отрезок.

f(-3)=2*(-3)³+3*(-3)²-12*(-3)+5=-54+27+36+5=14;  f(-2)= 2*(-2)³+3*(-2)²-12*(-2)+5 =-16+12+24+5=25; f(1)= 2+3-12+5= -2 наименьшее значение функции;

f(4)=2*4³+3*4²-12*4+5 =128+48-48+5=133 наибольшее значение

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра