Найти предел функции.
Правила Лопиталя применять нельзя


Найти предел функции. Правила Лопиталя применять нельзя

Angel1509kl Angel1509kl    1   05.11.2020 19:11    3

Ответы
Ketti08 Ketti08  05.12.2020 19:12
ответ:6\sqrt2Объяснение:1 Запишем\displaystyle \lim_{x\to0} \dfrac{\arcsin 3x}{\sqrt{2+x}-\sqrt2}2 Умножим на 1

Но мы представим 1 как дробь \dfrac{\sqrt{2+x}+\sqrt2}{\sqrt{2+x}+\sqrt2}, такое действие еще называют домножением на сопряжённое

\displaystyle \lim_{x\to0} \dfrac{\arcsin 3x}{\sqrt{2+x}-\sqrt2}\cdot\dfrac{\sqrt{2+x}+\sqrt2}{\sqrt{2+x}+\sqrt2}

3 Соберем все в одну дробь

\displaystyle \lim_{x\to0} \dfrac{\big(\sqrt{2+x}+\sqrt2\big)\arcsin 3x}{\big(\sqrt{2+x}-\sqrt2\big)\big(\sqrt{2+x}+\sqrt2\big)}

4 Заметим в знаменателе разность квадратов

(a-b)(a+b)=a^2-b^2 где

a=\sqrt{2+x}\\b=\sqrt2

\displaystyle \lim_{x\to0} \dfrac{\big(\sqrt{2+x}+\sqrt2\big)\arcsin 3x}{2+x-2}

5 Упростим знаменатель

\displaystyle \lim_{x\to0} \dfrac{\big(\sqrt{2+x}+\sqrt2\big)\arcsin 3x}{x}

6 Представим дробь как произведение\displaystyle \lim_{x\to0} \big(\sqrt{2+x}+\sqrt2\big)\cdot\dfrac{\arcsin 3x}{x}7 Представим предел произведения как произведение пределов\displaystyle \lim_{x\to0} \big(\sqrt{2+x}+\sqrt2\big)\cdot\lim_{x\to0}\dfrac{\arcsin 3x}{x}8 Посчитаем первый предел\displaystyle \big(\sqrt{2+0}+\sqrt2\big)\cdot\lim_{x\to0}\dfrac{\arcsin 3x}{x}\displaystyle 2\sqrt{2}\cdot\lim_{x\to0}\dfrac{\arcsin 3x}{x}9 Так как x\sim 3x~(x\to0) то мы можем заметить в пределе x\to0 на 3x\to0\displaystyle 2\sqrt{2}\cdot\lim_{3x\to0}\dfrac{\arcsin 3x}{x}10 Умножим выражение пол пределом на 1

Но 1 мы представим в виде \dfrac33

\displaystyle 2\sqrt{2}\cdot\lim_{3x\to0}\dfrac{3\arcsin 3x}{3x}

11 Вынесем константу (3) за предел

\displaystyle 6\sqrt{2}\cdot\lim_{3x\to0}\dfrac{\arcsin 3x}{3x}

12 Имеем первый замечательный предел, он равен 1\displaystyle 6\sqrt{2}\cdot1ОТВЕТ6\sqrt2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра