Найти общее решение дифференциального уравнения: (x cos y - y sin y) dy + (x sin y + y cos y ) dx= 0

Знания061 Знания061    2   21.06.2019 07:20    0

Ответы
Персик1лайм Персик1лайм  16.07.2020 21:50
(xcos(y)-ysin(y))dy+(x+sin(y)+ycos(y))dx=0
xsin(y)+ycos(y)+dy(xcos(y)-ysin(y))=0
Допустим, R(x,y)=xsin(y)+ycos(y) и S(x,y)=xcos(y)-ysin(y).
Это не строгое уравнение,т.к. R'(x,y)=xcos(y)-ysin(y)+cos(y)≠cos(y)=
dS(x,y).
Найдем интегрирующий фактор u(x), такой что u(x)*R(x,y)+u(x)dy*
S(x,y)=0.
Это означает: (u*R(x,y))'=d(u(x)*S(x,y)):
(cos(y)+xcos(y)-ysin(y)u(x)=du(xcos(y)-ysin(y))+cos(y)u(x)
\frac{du}{u}=1
ln(u)=1
u=e^x
e^x(xsin(y)+ycos(y))+(e^x(xcos(y)-ysin(y))dy=0

Допустим, P(x,y)=e^x(xsin(y)+ycos(y)) и Q(x,y)=e^x(xcos(y)-ysin(y)).
Это строгое уравнение,т.к. P'(x,y)=e^x(xcos(y)-ysin(y)+cos(y))=dQ(x,y).
Введем f(x,y), такой что df(x,y)=P(x,y) и f'(x,y)=Q(x,y):
Затем, решение будет для f(x,y)=c1, где c1- произвольная переменная.
f(x,y)=\int{e^x(ycos(y)+xsin(y)} dx=e^x(ycos(y)+sin(y)(x-1)+g(y);
где g(y)- некоторая функция от y.
f'(x,y)=(e^x(ycos(y)+sin(y)(x-1))+g(y))'=
=e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)
Сделаем замену f'(x,y)=Q(x,y):
e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)=e^x(xcos(y)-ysin(y))
Возьмем g'(y):
g'(y)=0
g(y)=\int0\ dy=0
Подставим g(y) к f(x,y):
f(x,y)=e^x(ycos(y)+sin(y)(x-1))
Получаем решение:
e^x(ycos(y)+sin(y)(x-1))=c_1
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра