Найдите все целые значения параметра , при каждом из которых уравнение имеет хотя бы один корень, и укажите корни уравнения для каждого из найденных значений .

Dbrfsdfsd Dbrfsdfsd    2   01.03.2020 17:25    0

Ответы
xennika xennika  11.09.2020 19:52

cos^2\frac{x}{2} =1+cosx\\ \\ sin^2x=1-cos^2x

5-4\cdot (1-cos^2x)-8\cdot (1+cosx)=3a\\ \\

Получаем квадратное уравнение относительно

cosx=t

4t^2-8t-7-3a=0

Это уравнение имеет хотя бы один корень, если D ≥0

D=64+16(7+3a)=16(11+3a)

D≥0⇒  11+3a≥0⇒  a≥ -11/3

t₁=1- (√(11+3а))/2    или   t₂=1+ (√(11+3а))/2

Обратная замена приводит к уравнениям вида cos=t₁  или   cosx=t₂

Чтобы эти уравнения имели хотя бы один корень, необходимо, что бы

-1 ≤ t₁ ≤1    или  -1 ≤ t₂ ≤1  

Решаем неравенства:

-1 ≤1+ (√(11+3а))/2  ≤1

-2≤√(11+3а))/2≤0

-4≤√(11+3а)≤0

Решением неравенства является

11+3a=0

a=-11/3

t₁=t₂=1/2

cosx=1/2

x=±(π/3)+2πn, n∈Z

Неравенство

-1 ≤1- (√(11+3а))/2  ≤1

также приводит к ответу a=-11/3

О т в е т. При а=-11/3

x=±(π/3)+2πn, n∈Z

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра