Найдите восемнадцатый член арифметической прогрессии (a n), у которой a1 = 6, S18 = 756. Подробное решение с формулами и началом решения через разность

Fancyone Fancyone    2   13.04.2020 17:05    2

Ответы
kristinakarpova2 kristinakarpova2  13.10.2020 04:28

ответ:1)a18=a1+17d=70+17*(-3)=70-51=19

2)d=-18-(-21)=-18+21=3

S20=(2*(-21)+19*3)*20/2=(-42+51)*10=9*10=90

3)b1=2 b2=6 d=6-2=4

S40=(2*2+39*4)*40/2=(4+156)*20=160*20=3200

4)d=(17,2-11,6)/(15-1)=5,6/14=0,4

an=11,6+0,4(n-1)=30,4

0,4(n-1)=30,4-11,6=18,8

n-1=18,8:0,4=188:4=47

n=47+1=48 да,является

5)a1=7  d=7 an<150

7+7(n-1)<150

7+7n-7<150

7n<150

n<21 3/7

n=21

S21=(2*7+7*20)*21/2=(14+140)*21/2=154*21/2=77*21=1617

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра