Найдите уравнение касательной к графику функции
f(x) = x^2- 4x -10 которая параллельна прямой у = - 6x + 7 .

Alena18091 Alena18091    1   07.05.2020 13:22    1

Ответы
Kata8i77866 Kata8i77866  28.08.2020 19:29

ответ: y = -6x - 11

Объяснение:

Касательная параллельна прямой y = -6x + 7. Коэффициент наклона этой прямой равен -6.

Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -6.

То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.

Итак, у нас дана функция y = x² - 4x - 10 и значение производной в точке касания.

а) Найдем точку, в которой производная функции y = x² - 4x - 10 равна -6.

Сначала найдем уравнение производной.

y' = (x² - 4x - 10)' = 2x - 4

Приравняем производную к числу -6.

                                          2x - 4 = -6

      2x = -2

       x = -1

б) Найдем уравнение касательной к графику функции y = x² - 4x - 10 в точке x₀ = -1.

Найдем значение функции в точке x₀ = -1.

y(-1) = (-1)² - 4·(-1) - 10 = 1 + 4  - 10 = -5

Подставим эти значения в уравнение касательной:

y - y(x₀) = y'(x₀)(x - x₀)

y - (-5) = -6(x - (-1))

y + 5 = -6(x + 1)

y = -6x - 6 - 5

y = -6x - 11

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра