Перепишем уравнение, учитывая, что
-----(1)
В уравнение (1) выражение находится в знаменателе, поэтому , или , - целое
или , - целое-----(2)
Сократим в левой части уравнения (1) на :
, отсюда , отсюда
, или , - целое ------(3)
Из решений (3) надо исключить значения, равные значениям (2):
, отсюда
, сокращая на , получим
- нечетные числа
Другими словами принимает только четные значения!
Из условия следует, что , отсюда
Таким образом, принимает значения
Видно, что решения (3) уравнения составляют арифметическую прогрессию с первым членом и последним седьмым членом
Теперь мы можем найти сумму всех решений уравнения как сумму первых семи членов арифметической прогрессии:
Перепишем уравнение, учитывая, что
-----(1)
В уравнение (1) выражение находится в знаменателе, поэтому , или , - целое
или , - целое-----(2)
Сократим в левой части уравнения (1) на :
, отсюда , отсюда
, или , - целое ------(3)
Из решений (3) надо исключить значения, равные значениям (2):
, отсюда
, сокращая на , получим
- нечетные числа
Другими словами принимает только четные значения!
Из условия следует, что , отсюда
Таким образом, принимает значения
Видно, что решения (3) уравнения составляют арифметическую прогрессию с первым членом и последним седьмым членом
Теперь мы можем найти сумму всех решений уравнения как сумму первых семи членов арифметической прогрессии: