Найдите стороны прямоугольного треугольника если один из его катетов на 14 см больше другого катета и на 2 см меньше гипотенузы

makskatya20 makskatya20    3   17.06.2019 22:10    1

Ответы
hanter13 hanter13  14.07.2020 19:21
Х (см) - меньший катет
(х + 14) см - больший катет
х + 14 + 2  = (х + 16) см - гипотенуза.
Квадрат гипотенузы = сумме квадратов катетов, с.у.
х² + (х + 14)² = (х + 16)²
х² + х² + 28х + 196 = х² + 32х + 256
2х² + 28х + 196 - х² - 32х - 256 = 0
х² - 4х - 60 = 0

Решаем квур
x² - 4х - 60 = 0
a = 1  b = -4  c = -60
D = b² - 4ac = (-4)² - 4 * (-60) = 256 = (16)²

x₁ = \frac{-b- \sqrt{D} }{2a}\frac{-(-4)- \sqrt{256} }{2*1}  = -6 -(НЕТ, сторона не отр)

x₂ = \frac{-b+ \sqrt{D} }{2a} = \frac{-(-4)+ \sqrt{256} }{2*1} = 10 (см) - меньший катет
(х + 14)  = 24 см - больший катет
х + 16  = 26 см - гипотенуза.
ПОКАЗАТЬ ОТВЕТЫ
ehot2004 ehot2004  14.07.2020 19:21
Пусть один из катетов треугольника равен х см. Тогда другой катет равен (х-14) см. А гипотенуза равна: (х+2) см.

По теореме Пифагора получаем:
(x+2)^{2}=x^{2}+(x-14)^{2}
x^{2}+4x+4=x^{2}+x^{2}-28x+196
x^{2}-28x+196-4x-4=0
x^{2}-32x+192=0, D=256=16^{2}
x_{1}= \frac{32+16}{2}=24
x_{2}= \frac{32-16}{2}=8

Проверим, какой из получившихся корней является решением задачи:
Пусть х=24 - один катет, тогда другой катет равен: 24-14=10 см., а гипотенуза равна: 24+2=26 см.
Стороны треугольника: 24, 10, 26 - правило существования треугольника соблюдается (24+10>26, 24+26>10, 26+10>24)
Пусть х=8 - один катет, тогда другой катет равен 8-14<0 - сторона не может быть отрицательной. Значит х=8 - не является решением.

ответ: 24, 10, 26
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра