Найдите производную функции y=sin3x/3x, запишите правила и формулы, которые вы применяли при вычислении.

Оля2204202 Оля2204202    3   18.09.2019 03:00    0

Ответы
даша3609 даша3609  07.10.2020 23:07
Отдельно вычислим для обеих функций производные.
Производная сложной функции: (g(f(x))'=g'(f(x)*f'(x): (sin 3x)'=(sin3x)'*(3x)'=3 cos3x.
Производная знаменателя - (3х)'=3.
Функция представлена в виде частного, производная таких функций вычисляется по формуле: y'= (u/g)'= (u'g - g'u)/u^2.
Следовательно, y'= (3 cos3x*3x - 3sin3x)/9x^2=(9x* cos3x - 3sin3x)/9x^2.
Надеюсь на отсутствие опечаток.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра

Популярные вопросы