Найдите наименьшее значение выражения (6x+5y-3)^2 + (2x+3y+3)^2 и значения x и y, при которых оно достигается. я уже 3й час не могу решить, .

yazeva006 yazeva006    1   10.08.2019 20:50    0

Ответы
milka2636 milka2636  02.08.2020 13:03
Сумма двух неотрицательных величин(в данном случае — это (6x+5y-3)^2} и (2x+3y+3)^2) не может быть отрицательной, т.е. всегда выполняется (6x+5y-3)^2\geqslant0 и (2x+3y+3)^2\geqslant0. Соответственно, наименьшим значением выражения (6x+5y-3)^2+(2x+3y+3)^2 будет ноль. Поэтому решаем уравнение (6x+5y-3)^2+(2x+3y+3)^2=0.

(6x+5y-3)^2+(2x+3y+3)^2=0
Сумма двух неотрицательных величин равна нулю тогда и только тогда, когда каждая из них равна нулю. Отсюда система уравнений:
см. приложение.
ответ: \{(3;-3)\}.
Найдите наименьшее значение выражения (6x+5y-3)^2 + (2x+3y+3)^2 и значения x и y, при которых оно до
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра