но т.к. у нас ограничение на x, то n здесь может принимать значение только 0 и соответственно x при этом значении равен Pi/2
Подставляем Pi/2 в уравнение и получаем -Pi/2 это наше наименьшее значение. Учитывая, что производная равна нулю на границе области определения, то в нашем случае, наибольшее значение будет в другой точке(0)
y'=-1-cos2x
y'=0<=>-1-cos2x=0
cos2x=-1
2x=Pi+2Pi*n
x=Pi/2 + Pi*n
n - целое
но т.к. у нас ограничение на x, то n здесь может принимать значение только 0 и соответственно x при этом значении равен Pi/2
Подставляем Pi/2 в уравнение и получаем -Pi/2 это наше наименьшее значение. Учитывая, что производная равна нулю на границе области определения, то в нашем случае, наибольшее значение будет в другой точке(0)
Подставляем 0 и получаем 0 - наибольшее значение