Найдите на числовой окружности все точки с абсциссой или ординатой, удовл. заданному неравенству или системе неравенств, и запишите (с двойного неравенства), каким числам t они соответствуют x-y< =1; 1-2y²< 0.
Строим прямую у=х-1 Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет Проверим, какой из них принадлежит (0;0) 0-0≤1 - верно. Значит условию удовлетворяет та часть, которой принадлежит точка (0;0) См. рис. 1
2у²=1 у²=1/2 у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы. Проверяем точку (0;0) 1-2·0<0 - неверно. Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0). См. рис.2
Системе x-y<=1; 1-2y²<0 удовлетворяет пересечение двух областей ( см. рис. 3)
Она разделила плоскость хОу на две полуплоскости: одна удовлетворяет неравенству, вторая нет
Проверим, какой из них принадлежит (0;0)
0-0≤1 - верно.
Значит условию удовлетворяет та часть, которой принадлежит точка (0;0)
См. рис. 1
2у²=1
у²=1/2
у=1/√2 или у=-1/√2 - это прямые, параллельные оси ох, они разбивают плоскость хОу на три полосы.
Проверяем точку (0;0)
1-2·0<0 - неверно.
Значит, условию удовлетворяет плоскость хоу,из которой удалена полоса, содержащая точку (0;0).
См. рис.2
Системе
x-y<=1;
1-2y²<0
удовлетворяет пересечение двух областей ( см. рис. 3)