Найдите множество значений функции: а) y=|tg x|
б) y=ctg^2 x
в) y=√tg x
г) y= 1/ctg x

kost32rus kost32rus    1   28.01.2021 10:04    3

Ответы
Алісія Алісія  27.02.2021 10:08

Вообще область значений тангенса и котангенса - все действительные числа:

E(\mathrm{tg}x)=E(\mathrm{ctg}x)=(-\infty;\ +\infty)

а)

y=|\mathrm{tg}x|

Если рассмотреть модуль тангенса, то отрицательные значения примут противоположные значения, то есть станут положительными. Нулевое и положительные значения сохранятся. Получим область значений:

E(|\mathrm{tg}x|)=[0;\ +\infty)

б)

y=\mathrm{ctg}^2x

Котангенс может принять значение любого действительного числа, но при возведении любого числа в квадрат результат получится неотрицательным.

E(\mathrm{ctg}^2x)=[0;\ +\infty)

в)

y=\sqrt{\mathrm{tg}x}

Тангенс может принять значение любого действительного числа. Под знак корня из них можно записать любое неотрицательное, при этом в результате может получиться любое неотрицательное число.

E(\sqrt{\mathrm{tg}x})=[0;\ +\infty)

г)

y=\dfrac{1}{\mathrm{ctg}x}

Котангенс может принять значение любого действительного числа. При делении 1 на любое число (отличное от нуля) может получиться любое число, кроме нуля.

E\left(\dfrac{1}{\mathrm{ctg}x}\right)=(-\infty;\ 0)\cup(0;\ +\infty)

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра