Чтобы найти координаты точек пересечения двух любых линий, нужно решить систему из описывающих эти линии уравнений, т.е систему: y=2x-9 y=x^2+bx x^2+bx=2x-9, x^2+(b-2)*x+9=0. Квадратное уравнение в общем случае имеет два решения, значения х дадут абсциссы точек пересечения. У нас же прямая является касательной. Значит прямая и парабола имеют только одну общую точку. Это возможно только в том случае, когда дискриминант квадратного уравнения равен нулю. Это условие позволяет найти "b". D=(b-2)^2-4*1*9=0, b^2-4b-32=0, b=8 или b=-4. По условию b>0< значит b=8. Подставляем это значение в квадратное уравнение: x^2+6x+9=0, x=(-3).
y=2x-9
y=x^2+bx
x^2+bx=2x-9,
x^2+(b-2)*x+9=0.
Квадратное уравнение в общем случае имеет два решения, значения х дадут абсциссы точек пересечения. У нас же прямая является касательной. Значит прямая и парабола имеют только одну общую точку. Это возможно только в том случае, когда дискриминант квадратного уравнения равен нулю. Это условие позволяет найти "b".
D=(b-2)^2-4*1*9=0,
b^2-4b-32=0,
b=8 или b=-4.
По условию b>0< значит b=8.
Подставляем это значение в квадратное уравнение:
x^2+6x+9=0,
x=(-3).