Областью допустимых значений неравенства на промежутке [-6; 12] будет x∈[-6; -3]∪[0; 3]∪[6; 9]∪{12}.
Вернемся к неравенству. Так как корень квадратный является числом неотрицательным при любых значениях x, можно выполнить следующий равносильный переход.
С учетом ОДЗ на промежутке получим решения x∈{-6}∪[-4; -3]∪[0; 3]∪{6}∪{9}∪{12}. Таким образом, при заданном условии неравенство имеет 10 целых решений.
Рассмотрим ограничение, накладываемое квадратным корнем.
Областью допустимых значений неравенства на промежутке [-6; 12] будет x∈[-6; -3]∪[0; 3]∪[6; 9]∪{12}.
Вернемся к неравенству. Так как корень квадратный является числом неотрицательным при любых значениях x, можно выполнить следующий равносильный переход.
С учетом ОДЗ на промежутке получим решения x∈{-6}∪[-4; -3]∪[0; 3]∪{6}∪{9}∪{12}. Таким образом, при заданном условии неравенство имеет 10 целых решений.
ответ: 10