Так как /x/=√x², то выражение для функции можно переписать в виде f(x)=√(x²-14*x+45)². Тогда f'(x)=2*(x²-14*x+45)*(x-7)/√(x²-14*x+45)² и f'(6)=2*(-3)*(-1)/3=2. ответ: 2.
Специально вычисляю производную. Для этого представим f(x) в виде f(x)=[(x²-14*x+45)²]^1/2, тогда f'(x)=1/2*[[(x²-14*x*45)]²]^(-1/2)*2*(x²-14*x+45)*(2*x-14)=1/[2*√(x²-14*x+45)²]*2*(x²-14*x+45)*2*(x-7)=2*(x²-14*x+45)*(x-7)/√(x²-14*x+45)²
Специально вычисляю производную. Для этого представим f(x) в виде f(x)=[(x²-14*x+45)²]^1/2, тогда f'(x)=1/2*[[(x²-14*x*45)]²]^(-1/2)*2*(x²-14*x+45)*(2*x-14)=1/[2*√(x²-14*x+45)²]*2*(x²-14*x+45)*2*(x-7)=2*(x²-14*x+45)*(x-7)/√(x²-14*x+45)²