(d−7)⋅(d+3)−(d+5)⋅(d−14) = d(d+3) - 7(d+3) - (d(d-14) + 5(d-14)) = d² + 3d - 7d - 21 - (d² - 14d + 5d - 70) = d² + 3d - 7d - 21 - d² + 14d - 5d + 70 = 5d - 21 + 70 = 5d + 49 = 5 * (-0,14) + 49 = -0,7 + 49 = 48,3
ответ: 48,3.
Объяснение:
(d−7)⋅(d+3)−(d+5)⋅(d−14) = d²+3d-7d-21 - (d²-14d+5d-70)=
d²+3d-7d-21 - d²+14d-5d+70= 3d-7d+14d-5d -21+70 = 5d + 49;
при d=-0.14:
5*(-0.14) + 49 = -0.7 + 49 = 48,3.
(d−7)⋅(d+3)−(d+5)⋅(d−14) = d(d+3) - 7(d+3) - (d(d-14) + 5(d-14)) = d² + 3d - 7d - 21 - (d² - 14d + 5d - 70) = d² + 3d - 7d - 21 - d² + 14d - 5d + 70 = 5d - 21 + 70 = 5d + 49 = 5 * (-0,14) + 49 = -0,7 + 49 = 48,3
ответ: 48,3.
Объяснение:
(d−7)⋅(d+3)−(d+5)⋅(d−14) = d²+3d-7d-21 - (d²-14d+5d-70)=
d²+3d-7d-21 - d²+14d-5d+70= 3d-7d+14d-5d -21+70 = 5d + 49;
при d=-0.14:
5*(-0.14) + 49 = -0.7 + 49 = 48,3.