Надо определите кол-во корней уравнения 3sin8x=x^{3}

rrurr rrurr    3   28.08.2019 09:50    2

Ответы
dimaghhf dimaghhf  06.10.2020 00:19
Самое очевидное --графическое решение...
кубическая парабола --функция монотонно возрастающая, синусоида --вытянута в три раза вдоль оси ОУ
и сжата в 8 раз вдоль оси ОХ
корни --это точки пересечения графиков...
пересечение же возможно только на промежутке для у ∈ [-3; 3],
следовательно для х ∈ [-∛3; ∛3] это примерно (-1.44; 1.44), т.е. 
немного у'же промежутка (-π/2; π/2)
функция у=sin(8x) достигает максимума на этом промежутке несколько раз: у ' = 8cos(8x) = 0 ---> 8x = π/2 + πk; x = π/16 + πk/8
-π/2 < x < π/2 
-π/2 < π/16 + πk/8 < π/2 
-8π < π + 2πk < 8π 
-8 < 1 + 2k < 8 
-9 < 2k < 7 
-4.5 < k < 3.5 причем k∈Z, т.е. k={-4; -3; -2; -1; 0; 1; 2; 3}
это количество экстремумов (максимумов и минимумов),
пересечение графиков возможно в промежутках между экстремумами...
таких промежутков семь))
графическая иллюстрация прилагается))
Надо определите кол-во корней уравнения 3sin8x=x^{3}
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра