На прямой отложены два равных отрезка АС и СВ. На отрезке СВ взята точка D, которая делит его в отношении 2:3, считая от точки
С. Найдите длину отрезков АС, DВ и AB, если CD=12 см.

Решить относительно X

kutinaI kutinaI    3   29.10.2020 16:31    0

Ответы
AndyXD AndyXD  28.11.2020 16:32

Объяснение:

Если CD=12, a это 2:3 от СВ, то можно найти СВ СВ= 12:2=6cm. это одна третья отрезка СВ и длина DB  

12+6=18 см. длина всего отрезка СВ

если СВ=18 см ,а отрезки АС и С В равны, то и АС =18 см.

18+18=36cm. Это длина АВ

получаем

АС= 18 см

DB= 6 cm.

AB = 36 cm.

Х-СВ

Х= 12/2*3

х=18

СВ=18 см

х=DB

X= 18/3

DB=6cm.

AB-X

X= 18+18

X=36

DB=36 cm.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра