На доске было написано натуральное число n. у него стёрли последнюю цифру, после чего полученное число возвели в квадрат и умножили на 6. результат оказался равен исходному числу n. найдите все возможные значения n. если ответов несколько, укажите их через запятую.
Цифру b стерли, оставшееся a возвели в квадрат и умножили на 6.
Получилось исходное число 10a + b
6a^2 = 10a + b.
Это значит, что число N = 10a + b делится на 6, то есть на 2 и на 3.
Значит, b четное и сумма a + b делится на 3. Пробуем варианты
b = 0; 6a^2 = 10a; a = 10/6 - не подходит
b = 2; a = 1 (6 = 10); 4 (96 = 12); 7 (294 = 72)
b = 4; a = 2 (24 = 24); 5 (150 = 54); 8 (384 = 84)
b = 6; a = 3 (54 = 36); 6 (216 = 66); 9 (486 = 96)
b = 8; a = 1 (6 = 18); 4 (96 = 48); 7 (294 = 78)
Подходит только 24