Моторная лодка, проехав по течению реки 6 км, затем вернулась назад, затратив на весь путь 35 мин. найдиге собственную скорость лодки, если известно, что 18 км по течению реки она проплывает на 15 мин быстрее, чем против течения.

Zubu Zubu    3   18.05.2019 14:20    8

Ответы
Аурика1303 Аурика1303  11.06.2020 20:50

Скорость лодки x км/ч, скорость течения y км/ч. Скорость лодки по течению (x+y) км/ч, против течения (x-y) км/ч.

6 км по течению лодка за 6/(x+y) часов, 6 км против течения за 6/(x-y) часов, всего затратив 35 мин или 35/60 = 7/12 часа.

18 км по течению лодка пройдёт за 18/(x+y) часов, 18 км против течения за 18/(x-y) часов, что на 15 мин или 1/4 часа больше.

Составим и решим систему:

\begin{cases} \frac6{x+y}+\frac6{x-y}=\frac7{12}\\ \frac{18}{x-y}-\frac{18}{x+y}=\frac14 \end{cases}\Rightarrow \begin{cases} \frac{6x-6y+6x+6y}{(x+y)(x-y)}=\frac7{12}\\ \frac{18x+18y-18x+18y}{(x-y)(x+y)}=\frac14 \end{cases}\Rightarrow\\ \Rightarrow \begin{cases} \frac{12x}{x^2-y^2}=\frac7{12}\\ \frac{36y}{x^2-y^2}=\frac14 \end{cases}\Rightarrow \begin{cases} 144x=7(x^2-y^2)\\ 144y=x^2-y^2 \end{cases}\Rightarrow

\Rightarrow \begin{cases} 144x=7\cdot144y\\ 144y=x^2-y^2 \end{cases}\Rightarrow \begin{cases} x=7y\\ 144y=(7y)^2-y^2 \end{cases}\\ 144y=(7y)^2-y^2\\ 144y=49y^2-y^2\\ 48y^2-144y=0\\ y^2-3y=0\\ y(y-3)=0\\ y=0\;-\;HE\;nogx.\\ y-3=0\Rightarrow y=3\\ \begin{cases} x=21\\ y=3 \end{cases}

Собственная скорость лодки 21 км/ч.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра