Предположим обратное. Пусть а(ах₀²+bx₀+c) > 0 при х₁ < х₀ < х₂ где, х₁ и х₂ - нули параболы, причём x₁ < x₂. Значит x₀ < 0. Так как x₁ < x₂, то наша парабола положительна. В таком случае мы предполагаем, что положительная парабола имеет конечное количество положительных значений y и бесконечное количество отрицательных значений y. Но это невозможно, так как ветви положительной параболы в промежутках (-∞ ; x₁) U (x₂ ; +∞) находится выше оси X. Следовательно, наше предположение неверно, и неравенство а(ах₀²+bx₀+c) < 0 верно.
Значит x₀ < 0.
Так как x₁ < x₂, то наша парабола положительна.
В таком случае мы предполагаем, что положительная парабола имеет конечное количество положительных значений y и бесконечное количество отрицательных значений y. Но это невозможно, так как ветви положительной параболы в промежутках (-∞ ; x₁) U (x₂ ; +∞) находится выше оси X.
Следовательно, наше предположение неверно, и неравенство а(ах₀²+bx₀+c) < 0 верно.