Между городами А и В по горной дороге через перевал регулярно ходит автобус. Во время подъема на перевал он едет со скоростью 25 км / ч , А во время спуска - 50 км / ч . Время его движения от А к В - 3,5 часа, а от В к А - 4. Найдите расстояние от А к В .
125 км.
Объяснение:
Допустим, что длина пути на подъём составляет х км, а длина пути на спуске равна у км, тогда по условию задачи мы можем составить систему из двух уравнений:
х/25 + у/50 = 3,5,
х/50 + у/25 = 4.
Из второго уравнения получаем:
(х + 2 * у)/50 = 4,
х + 2 * у = 200,
х = 200 - 2 * у.
Подставим это значение х в первое уравнение:
(200 - 2 * у)/25 + у/50 = 7/2,
(400 - 4 * у + у)/50 = 7/2,
2 * (400 - 3 * у) = 7 * 50,
800 - 6 * у = 350,
6 * у = 450,
у = 75 (км) - длина пути на спуске.
х = 200 - 75 * 2 = 50 (км) - длина пути на подъём.
Таким образом, весь путь от А до В составит:
75 + 50 = 125 км.