Задание можно решить методом подбора, как уже решено, а можно и аналитически.
Если между первым и последним членом прогрессии вставить три числа, то получаем прогрессию из пяти членов, где а1=3, а5=19. Используем формулу арифметической прогрессии для n-го члена: an=a1+(n+1)d. Для нашей задачи а5=а1+4d,
19=3+4d,
d=4 (это уравнение уже можно и решить :)).
Разница арифметической прогрессии - 4, второй член а2=а1+4=3+4=7, а2=7+4=... и т.д.
Задание можно решить методом подбора, как уже решено, а можно и аналитически.
Если между первым и последним членом прогрессии вставить три числа, то получаем прогрессию из пяти членов, где а1=3, а5=19. Используем формулу арифметической прогрессии для n-го члена: an=a1+(n+1)d. Для нашей задачи а5=а1+4d,
19=3+4d,
d=4 (это уравнение уже можно и решить :)).
Разница арифметической прогрессии - 4, второй член а2=а1+4=3+4=7, а2=7+4=... и т.д.
Думаю, уже понятно!