ОДЗ нашего уравнение:
Преобразуем левую часть уравнения, используя тождество:
-----(1)
В нашем случае , ,
Поэтому ------(2)
Правую часть нашего уравнения также преобразуем с тождества (1), предварительно представив слагаемое 3 в виде :
------(3)
C учетом (2) и (3) исходное уравнение примет вид:
-----(4)
Отсюда по свойству логарифма получим алгебраическое уравнение:
, или раскрывая скобки, получим
, или приведя подобные получим квадратное уравнение относительно :
Найдем его дискриминант:
Поскольку дискриминант положителен, то квадратное уравнение имеет два различных действительных корня:
удовлетворяет ОДЗ
не удовлетворяет ОДЗ.
Таким образом, только один корень квадратного уравнения является корнем исходного уравнения:
ОДЗ нашего уравнение:
Преобразуем левую часть уравнения, используя тождество:
-----(1)
В нашем случае , ,
Поэтому ------(2)
Правую часть нашего уравнения также преобразуем с тождества (1), предварительно представив слагаемое 3 в виде :
------(3)
C учетом (2) и (3) исходное уравнение примет вид:
-----(4)
Отсюда по свойству логарифма получим алгебраическое уравнение:
, или раскрывая скобки, получим
, или приведя подобные получим квадратное уравнение относительно :
Найдем его дискриминант:
Поскольку дискриминант положителен, то квадратное уравнение имеет два различных действительных корня:
удовлетворяет ОДЗ
не удовлетворяет ОДЗ.
Таким образом, только один корень квадратного уравнения является корнем исходного уравнения: