Log4 (x^2-2x+13)> 0 log3 (5-x)+log3 (-1-x)=3 logx^4+lg4x=2+lgx^3 log2x-2 logx^2=-1 lg(2x^2-4x+12)=lgx+lg(x+3)

sgymgjvb sgymgjvb    3   30.06.2019 21:40    1

Ответы
jojolili jojolili  02.10.2020 16:40
1) одз: x^2-2x+13>0
D=-48 корней нет, один интервал со знаком +
=> верно при любых значениях х
log4(x^2-2x+13)>log4(1)
т.к. 4>1
x^2-2x+13>1
x^2-2x+11>0
верно при любых x 
2) log3 (5-x)+log3 (-1-x)=3
log3 (5-x)*(-1-x)=3
(5-x)*(-1-x)=3^3
(5-x)*(-1-x)=27
x^2-4x-32=0
D=16+128=144=12^2
x(1)=8
x(2)=-4
3) logx^4+lg4x=2+lgx^3 (тут наверное опечатка и первый логарифм тоже десятичный, тогда)
lgx^4+lg4x=2+lgx^3
lg(x^4*4x)=lg100+lgx^3
lg(4x^5)=lg(100x^3)
4x^5=100x^3
4x^5-100x^3=0
x^3(4x^2-100)=0
x^3=0 или 4x^2-100=0
из первого
x=0
из второго
4x^2=100
x^2=25
x=5;x=-5
4) не понимаю где тут основание
5) lg(2x^2-4x+12)=lgx+lg(x+3)
lg(2x^2-4x+12)=lg(x*(x+3))
lg(2x^2-4x+12)=lg(x^2+3x)
2x^2-4x+12=x^2+3x
x^2-7x+12=0
x(1)+x(2)=7
x(1)*x(2)=12
=> x(1)=3,x(2)=4
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра