v - знак квадратного корня.
v(3x-2)< =x одз: 3x-2> =0; x> =2/3
в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
возведем обе части в квадрат:
3x-2< =x^2
3x-2-x^2< =0
x^2-3x+2> =0
x^2-3x+2=0
d=(-3)^2-4*1*2=1
x1=(3-1)/2=1; x2=(3+1)/2=2
++
с учетом одз: x e [2/3; 1] u [2; + беск.)
подробнее - на -
v - знак квадратного корня.
v(3x-2)< =x одз: 3x-2> =0; x> =2/3
в левой части неравенства стоит квадратный корень,который принимает только неотрицательные значения,поэтому правая часть неравенства тем более должна быть неотрицательной: x> =0.
возведем обе части в квадрат:
3x-2< =x^2
3x-2-x^2< =0
x^2-3x+2> =0
x^2-3x+2=0
d=(-3)^2-4*1*2=1
x1=(3-1)/2=1; x2=(3+1)/2=2
++
с учетом одз: x e [2/3; 1] u [2; + беск.)
подробнее - на -