Какие из выражений (-m-n)^2, (-m+n)^2, (n-m)^2 и (-n-m)^2 тождественно равны выражению: а) (m-n)^2 б) (m+n)^2

lewaq lewaq    3   17.07.2019 12:20    0

Ответы
morgacheva2001 morgacheva2001  25.08.2020 09:37
   То́ждество — это равенство, выполняющееся на всём множестве значений входящих в него переменных.
    Чтобы доказать тождество надо выполнить тождественные  преобразования одной или обеих частей равенства, и получить слева  
и справа одинаковые выражения. Чтобы доказать, что равенство не является тождеством,  
достаточно найти одно допустимое значение переменной, при котором,  
получившиеся числовые выражения не будут равны друг другу. 

1) ( -m-n)^2=(m-n)^2
      m^2+2mn+n^2= m^2-2mn+n^2 - не тождественно равное выражение. 

      ( -m-n)^2=(m+n)^2
       m^2+2mn+n^2= m^2+2mn+n^2 -тождественно равное выражение

2) (-m+n)^2=(m-n)^2
     m^2-2mn+n^2=m^2-2mn+n^2 - тождественно равное выражение
      
      (-m+n)^2=(m+n)^2
       m^2-2mn+n^2=m^2+2mn+n^2

И так же делаешь остальные  два. 

    

      
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра