4+2−2√−5⋅2+1+2−2√=64x+x2−2−5⋅2x+1+x2−2=6(22)+2−2√−5⋅2+2−2√⋅2=6(22)x+x2−2−5⋅2x+x2−2⋅2=6(2+2−2√)2−10⋅2+2−2√=6(2x+x2−2)2−10⋅2x+x2−2=62−10=6t2−10t=6=5+31̅√=5−31̅√t=5+31t=5−312+2
4+2−2√−5⋅2+1+2−2√=64x+x2−2−5⋅2x+1+x2−2=6(22)+2−2√−5⋅2+2−2√⋅2=6(22)x+x2−2−5⋅2x+x2−2⋅2=6(2+2−2√)2−10⋅2+2−2√=6(2x+x2−2)2−10⋅2x+x2−2=62−10=6t2−10t=6=5+31̅√=5−31̅√t=5+31t=5−312+2