Как решить 1) 0*(-2-2*0),2) -1*(-3-2*0) , 3) 3*(6-2*3)

Котан112 Котан112    1   03.08.2019 03:50    0

Ответы
простоя43 простоя43  08.09.2020 06:55

Решить уравнение .

Решение. Если раскрыть скобки и привести подобные слагаемые, то получится уравнение , которое решать весьма сложно. Поэтому воспользуемся другим введем новую переменную  и решим квадратное уравнение . Его корни:  и . Соответственно исходное уравнение будет равносильно совокупности двух уравнений  

или

Таким образом, исходное уравнение четвертой степени имеет два корня  и .

ответ: , .

Пример 2. Решить уравнение x3 – 4x2 + 5x –2 = 0.

Решение. Преобразуем  уравнение:

x3 – 4x2 + 5x – 2 = 0;                    (x3 – 4x2 + 4x) + (x – 2) = 0;

x(x2 – 4x + 4) + (x – 2) = 0;          x(x – 2)2 + (x – 2) = 0;

(x – 2)·(x2 – 2x + 1) = 0;               (x – 2)·(x – 1)2 = 0.

Значит, x – 2 = 0 или (x – 1)2 = 0.

ответ: х = 1 или х = 2.

Пример 3. Решить уравнение .

Решение. Данное уравнение можно решать двумя

Сгруппируем слагаемые следующим образом:

.

Уравнение  не имеет решений, поскольку .

Таким образом,  исходное уравнение имеет единственное решение .

Так как данное уравнение является приведенным и имеет целые коэффициенты, то найдем один его корень подбором среди делителей свободного члена : . Легко убедиться, что  является корнем уравнения. Чтобы найти остальные корни разделим многочлен  на двучлен :

Получим совокупность двух уравнений , которая решена в ответ: .Пример 4. Найти наибольший отрицательный корень уравнения.Решение. Подобрать корни данного уравнения весьма сложно, поэтому воспользуемся следующим приемом: домножим (или разделим) данное уравнение на некоторое число так, чтобы старший член уравнения стал кубом некоторого выражения.Заметим, что , и введем новую переменную . В результате получим уравнение , равносильное исходному. Подбором найдем его корни ,  и , которым будут соответствовать корни исходного уравнения ,  и . Наибольшим отрицательным корнем является .ответ: .Пример 5. Найти  наименьший корень уравнения.Решение. Преобразуем исходное уравнение следующим образом:Введем новую переменную  и получим уравнение . Решим полученное уравнение как квадратное относительно .,,, или .Вернемся к переменной .  Получили четыре решения исходного уравнения. Выберем наименьшее из них. Так как , то , поэтому  – наименьшее решение.ответ: . Пример 6. Решить уравнение.Решение. Введём новую переменную t=2x+1/(3x), тогда получим3t2 + 10t + 7 = 0.Корни этого уравнения: t1 = –1, t2 = -7/3. Рассмотрим два случая:а) t = –1;  2x+(3x)-1=-1; 6x2 + 3x + 1 = 0; дискриминант меньше нуля – корней нет.б) t=-7/3;  2x+(3x)-1=-7/3;  6x2 + 7x + 1 = 0; х = –1 или x=-1/6.ответ: -1; -1/6. Пример 7. Решить уравнениеРешение. Выделим в левой части уравнения полный квадрат и затем с замены переменной сведём его к квадратному уравнению.Пусть новая переменная t=x2/(x+2), тогда получим после упрощения квадратное уравнение t2 + 4t = 5, корнями которого являются числа 1 и –5.Рассмотрим два случая:а) t = 1;      ;        x2 – x – 2 = 0;        x1 = –1 или x2 = 2.б) t = –5;     ;       x2 + 5x + 10 = 0;      решений нет.ответ: -1; 2. Пример 8. Решить уравнение.Решение. Преобразуем это уравнение следующим образом:.Выполним деление каждой дроби:;; .Приведём к общему знаменателю и затем упростим числитель:,.Отсюда следует ответ.ответ: 0; -5/2.             Задания для самостоятельного решения1. Решите уравнения методом разложения на множители:а) x3 + 2x2 + 3x + 6 = 0;                б) x4 – 81 = 0;в) x4 + 4x2 – 21 = 0;                     г) x4 – 8x = 0;д) x4 – 27x = 0;                            е) x3 – 3x – 2 = 0;ж) x3 – 19x – 30 = 0;                    з) 2x3 – x2 – 1 = 0;и) 2x4 +x3 – 2x2 – x = 0.2. Решите уравнения методом введения новой переменной:а) (x2 – 3x)2 + 3(x2 – 3x) – 28 = 0;б) (x2 + 5x)2 –2(x2 + 5x) = 24;в) (x2 –2 x – 1)2 + 3x2 – 6x – 13 = 0;г) (x2 + x + 1)2 – 3x2 – 3x – 1 = 0;д) ;е) ;ж) .3. Решите уравнения методом введения новых переменных (в некоторых уравнениях вначале соответствующим образом сгруппируйте множители, а затем раскройте скобки):а) (2x2 – 3x + 5)2 – 60(2x2 – 3x + 5) = –500;б) (3x2 – x + 1)2 –5(3x2 – x + 1) – 6 = 0;в) (x2 + x + 1)·(x2 + x + 2) = 12;г) (x2 – 2x – 4)·(x2 – 2x – 3) = 2;д) (x + 3)·(x + 1)·(x + 5)·(x + 7) = –16;е) (x + 3)·(x + 1)·(x + 2)·(x + 4) = 3;ж) (x – 2)·(x + 1)·(x – 6)·(x – 3) = 13;з) (x – 2)·(x + 4)·(x + 5)·(x – 3) = 18.4. Решите уравнения:а) ;б) ;в) ;г) ;д) ;е) ;ж) .5. Решите уравнения:а) (x + 2)4 + (x + 4)4 = 82;б) (x – 3)4 + (x + 1)4 = 256;в) (x – 5)4 + (x + 1)4 = 386;г) (x + 5)4 + (x + 3)4 = 16;д) (x –1)5 + (x + 3)5 = 242(x + 1);е) (2x – 3)4 + (2x – 5)4 = 2.6. Решите уравнения:а) ;б) ;в) ;г) ;д) ;е) . ответы
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра