Как доказать тиарему Пифагора

rita1501 rita1501    1   28.08.2021 14:45    0

Ответы
Будда427 Будда427  28.08.2021 14:50

Объяснение:

Дано: ∆ABC, в котором ∠C = 90º.

Доказать: a2 + b2 = c2.

Пошаговое доказательство:

Проведём высоту из вершины C на гипотенузу AB, основание обозначим буквой H.

Прямоугольная фигура ∆ACH подобна ∆ABC по двум углам:

∠ACB =∠CHA = 90º,

∠A — общий.

Также прямоугольная фигура ∆CBH подобна ∆ABC:

∠ACB =∠CHB = 90º,

∠B — общий.

Введем новые обозначения: BC = a, AC = b, AB = c.

Из подобия треугольников получим: a : c = HB : a, b : c = AH : b.

Значит a2 = c * HB, b2 = c * AH.

Сложим полученные равенства:

a2 + b2 = c * HB + c * AH

a2 + b2 = c * (HB + AH)

a2 + b2 = c * AB

a2 + b2 = c * c

a2 + b2 = c2

Теорема доказана.

ПОКАЗАТЬ ОТВЕТЫ