Известно, что а > b. Сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8.
2. Сложите почленно неравенства 3,6а > 4,7b + -1,8а > -1,9b и запишите полученное неравенство.
4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6 и 3,2 < b < 3,3.
5. Докажите неравенство: а) (х + 7)2 > х(х + 14); б) b2 + 5 10(b - 2).

SKYScraRPharaon SKYScraRPharaon    3   08.04.2020 22:01    1

Ответы
vipborisov200 vipborisov200  12.10.2020 23:12

Извиняюсь за почерк. Пишу ночью.


Известно, что а > b. Сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8. 2. Сложите почл
Известно, что а > b. Сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8. 2. Сложите почл
Известно, что а > b. Сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8. 2. Сложите почл
Известно, что а > b. Сравните: а) 21а и 21b; б) -3,2а и -3,2b; в) а + 8 и b + 8. 2. Сложите почл
ПОКАЗАТЬ ОТВЕТЫ
MARCOM03 MARCOM03  12.10.2020 23:12

Объяснение:1. Известно, что а > b.  а) Умножим обе части неравенства а > b на 21, получим 21а > 21b; б) Умножим обе части неравенства а > b на  (-3,2), получим -3,2а < -3,2b;  в) а + 8 > b + 8.

2. Сложим почленно неравенства 3,6а > 4,7b и    -1,8а > -1,9b  ⇒3,6а-1,8а> 4,7b-1,9b ⇒1,8a>2,8b

4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6 и 3,2 < b < 3,3.    ⇒                                      4,7 < (a+b) < 4,9 ⇒ 4,7 ·2 < (a+b)·2 < 4,9·2 ⇒ 9,4 < P < 9,8.  Теперь оценим площадь:  неравенства одинаковых знаков с положительными членами можно почленно умножать, значит                                1,5 ·3,2 < ab < 1,6 · 3,3  ⇒ 4,8 < S < 5,28

5. Докажите неравенство: а) (х + 7)² > х(х + 14) ⇒x²+14x+49 -x² -14x= 49>0, чтд              б) b² + 5 ≥ 10(b - 2) ⇒ b² + 5 - 10b +20= (b²-10b+25= (b-5)²≥0,чтд

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра