Из пункта а в пункт в, расстояние между которыми 18 км, одновременно выезжают два велосипедиста. скорость одного из них на 5 км/ч меньше скорости другого. велосипедист, который первым прибыл в в, сразу же повернул обратно и встретил другого велосипедиста через 1 ч 20 мин после выезда из а. на каком расстоянии от пункта в произошла встреча?

dumargarita dumargarita    2   01.06.2019 11:20    0

Ответы
kolyanovak7 kolyanovak7  02.07.2020 15:55
Пусть расстояние от В до точки встречи S км/ч. 
Скорость первого велосипедиста Х км/ч, скорость второго Х-5 км/ч. 
Тогда первый за 1 час 20 минут (4/3 часа) проехал расстояние (18+S) км: 

(18+S) / x = 4/3 
отсюда Х = 3 * (18+S) / 4 

За это же время (4/3 часа) второй велосипедист проехал Расстояние 18-S км: 

(18-S) / (х-5) = 4/3 

(18+S) / x = (18-S) / (х-5) 
(18+S) (x-5) = (18-S) x 
18x - 90 + Sx - 5S = 18x - Sx 
2Sx - 5S - 90 = 0 
подставляем x,выраженное через S (Х = 3 * (18+S) / 4) 
2S * 3 (18+S) / 4 - 5S - 90 = 0 
1.5 S (18+S) - 5S - 90 = 0 
1.5 S^2 + 27S - 5S - 90 = 0 
1.5S^2 + 22S - 90 = 0 
D = 22^2 + 4*1.5 * 90 = 484 + 540 = 1024 = 32^2 
S1 = (-22 - 32)/3 <0 
S2 = (-22+32)/3 = 10/3 = 3 1/3 
ответ: на расстоянии 3_1/3 км. 

Проверка: 
первый за 4/3 часа проехал 18+10/3 = 64/3 км. 
Его скорость 64/3 / (4/3) = 16 км/ч. 
Скорость второго 16-5=11 км/ч. 
За 4/3 часа он проехал 11 * (4/3) = 44/3 км (считая от пункта А). 
18 - 44/3 = 10/3 км от пункта В
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра