1) Область определения - вся числовая прямая, это значит, что этот параметр не влияет на четность(функция может быть как четной, так и нечетной, так и общего вида)
2) Функция четна, если f(-x) = f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно f(x), значит функция не может быть четной
3) Функция нечетна, если f(-x) = -f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно -f(x), значит функция не может быть нечетной
4) Таким образом, эта функция ни четная ни нечетная, т.е. эта функция общего вида
Ни четная ни нечетная(функция общего вида)
Объяснение:
1) Область определения - вся числовая прямая, это значит, что этот параметр не влияет на четность(функция может быть как четной, так и нечетной, так и общего вида)
2) Функция четна, если f(-x) = f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно f(x), значит функция не может быть четной
3) Функция нечетна, если f(-x) = -f(x), проверяем, f(-x) = 5 + 3x^3 и это не равно -f(x), значит функция не может быть нечетной
4) Таким образом, эта функция ни четная ни нечетная, т.е. эта функция общего вида