Исследовать следующую функцию на непрерывность и выяснить характер точек разрыва если,​

vladisden vladisden    2   01.11.2019 08:26    0

Ответы
aiis17 aiis17  10.10.2020 10:39

ответ: функция имеет разрыв первого рода в точке x=-1 и непрерывна при других значениях x.

Объяснение:

Зададим функцию в виде:

f(x)=1, если -∞<x<-1;

f(x)=x, если -1≤x≤1;

f(x)=1, если 1<x<∞.

1. Отсюда следует, что если x⇒-1 "слева", то есть оставаясь меньшим, чем -1, то lim (fx)=lim 1=1. Если же x⇒-1 "справа", то есть оставаясь большим, чем -1, то lim f(x)=lim(x)=-1. Таким образом, в точке x=-1 функция имеет конечные и при этом разные пределы "слева" и "справа" - а это значит, что в этой точке она терпит разрыв 1-го рода.  

2. Рассмотрим теперь точку x=1. Если x⇒1 "слева", то lim (fx)=lim x=1. Если x⇒1 "справа", то lim f(x)=lim 1=1. Таким образом, в точке x=1 функция имеет конечные и при этом равные пределы "слева" и "справа" - а это означает, что в этой точке она не имеет разрыва, т.е непрерывна.  

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра