Исследовать функцию у=кх + м , на монотонность . доказать , что функция возрастает или убывает с числовых неравенств и их свойст к> 0 или к< 0

ggg295 ggg295    2   29.08.2019 09:10    1

Ответы
ТвОйМаЛьЧиК ТвОйМаЛьЧиК  06.10.2020 02:33
1) Пусть k>0. Возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, а тогда - так как k>0 - и y(x2)-y(x1)=k*(x2-x1)>0. Таким образом, при x2>x1 y(x2)>y(x1), а это значит, что при k>0 функция y=k*x+m монотонно возрастает.

2) Пусть теперь k<0. Снова возьмём два значения x1 и x2, причём x2>x1. Исследуем разность y(x2)-y(x1)=k*x2+m-(k*x1+m)=k*(x2-x1). Поскольку x2>x1, то x2-x1>0, но так как k<0, то y(x2)-y(x1)=k*(x2-x1)<0. Таким образом, при x2>x1 y(x2)<y(x1), а это значит, что при k<0 функция y=k*x+m монотонно убывает.

 
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра