Исследовать функцию. можно только таблицу и график. 3х^2-х^3​

Marishkakey Marishkakey    2   14.05.2019 23:10    1

Ответы
настя7565 настя7565  10.06.2020 06:24

1. Точка пересечения графика функции с осью координат Оу:  

График пересекает ось Оу, когда x равняется 0: подставляем x=0 в 3x²-x³.

у = 3*0²-0³ = 0,

Результат: y=0. Точка: (0; 0).

2. Точки пересечения графика функции с осью координат Ох:  

График функции пересекает ось Ох при y=0, значит, нам надо решить уравнение:  

3x²-x³= 0

Решаем это уравнение: 3x²-x³ = х²(3 - x) = 0.

Получаем 2 корня: х = 0 и х = 3.

Результат: y=0. Точки: (0; 0 и (3; 0).

3. Экстремумы функции:  

Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:  

y' = 6х - 3x² = 0

Решаем это уравнение и его корни будут экстремумами:  

3x(2 - х) = 0, получаем 2 точки:

х1 = 0,  х2  = 2.

Результат: y’=0. Точки: (0; 0) и (2; 4).

4. Интервалы возрастания и убывания функции:  

Найдены 3 интервала монотонности функции: (-∞; 0), (0; 2) и (2; +∞).  

На этих промежутках находим знаки производной.  

Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.

x = -1 0 1 2 3

y' = -9 0 3 0 -9

Минимум функции в точке: х = 0,

Максимум функции в точке: х = 2.

Возрастает на промежутке: (0; 2).  

Убывает на промежутках: (-∞; 0) U (2; +∞).

5. Точки перегибов графика функции:  

Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции:  

y' '= 6 – 6х = 0.

Решаем это уравнение и его корни будут точками, где у графика перегибы:  

6 – 6х = 6(1 – х) = 0.

х = 1. Точка: (1; 2)

6. Интервалы выпуклости, вогнутости:  

Найдем интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках изгибов: где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый.

x = 0 1 2

y'' = 6 0 -6

Вогнутая на промежутках: (-∞; 1).

Выпуклая на промежутках: (1; +∞).  

7. Вертикальные асимптоты – нет.  

   Горизонтальные асимптоты графика функции:  

Горизонтальную асимптоту найдем с предела данной функции при x->+∞ и x->-∞. Соотвествующие пределы находим:  

lim 3x2-x3, x->+∞ = -∞, значит, горизонтальной асимптоты справа не существует

lim 3x2-x3, x->-∞ = ∞, значит, горизонтальной асимптоты слева не существует

Наклонные асимптоты графика функции:  

Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при  

Находим коэффициент k:

k=lim┬(x→∞)⁡〖(-x^3+3x^2)/x=-∞.〗

Поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.

8. Четность и нечетность функции:  

Проверим функцию - чётна или нечётна - с соотношений f(-х) = f(x) и f(-х) = -f(x).

Итак, проверяем:

y(-x) = -(-x)³ + 3(-x)² = x³ + 3x² ≠ y(x)

y(-x) = -(-x)³ + 3(-x)² = x³ + 3x²  = -(-х³-3х²) ≠ -y(x)

Значит, функция не является ни чётной, ни нечётной.

Таблица точек.

x y

-3.0 54

-2.5 34.4

-2.0 20

-1.5 10.1

-1.0 4

-0.5 0.9

0 0

0.5 0.6

1.0 2

1.5 3.4

2.0 4

2.5 3.1

3.0 0

3.5 -6.1

4.0 -16

4.5 -30.4

5.0 -50


Исследовать функцию. можно только таблицу и график. 3х^2-х^3​
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра