Объяснение:
(10y^2 - 3xy + 20x^2) / (8x^2 + xy + y^2)
Делим всё на y^2
(20(x^2/y^2) - 3(x/y) + 10) / (8(x^2/y^2) + (x/y) + 1)
Если y/x = 4, то x/y = 1/4
(20*(1/4)^2 - 3*1/4 + 10) / (8*(1/4)^2 + 1/4 + 1) = (20/16 - 3/4 + 40/4) / (8/16 + 1/4 + 1) =
= (5/4 + 37/4) / (3/4 + 4/4) = (42/4) / (7/4) = 42/4*4/7 = 42/7 = 6
Объяснение:
(10y^2 - 3xy + 20x^2) / (8x^2 + xy + y^2)
Делим всё на y^2
(20(x^2/y^2) - 3(x/y) + 10) / (8(x^2/y^2) + (x/y) + 1)
Если y/x = 4, то x/y = 1/4
(20*(1/4)^2 - 3*1/4 + 10) / (8*(1/4)^2 + 1/4 + 1) = (20/16 - 3/4 + 40/4) / (8/16 + 1/4 + 1) =
= (5/4 + 37/4) / (3/4 + 4/4) = (42/4) / (7/4) = 42/4*4/7 = 42/7 = 6