СВОЙСТВА ЧИСЕЛ. ДЕЛИМОСТЬ 1. Если в произведении двух чисел первый множитель увеличить на 1, а второй уменьшить на 1, то произведение увеличится на 2011. Как изменится произведение исходных чисел, если, наоборот, первый множитель уменьшить на 1, а второй увеличить на 1? ответ. Уменьшится на 2013. Решение. Пусть изначально были числа x и y (с произведением xy ). После того как первый множитель увеличили на 1, а второй уменьшили на 1, получилось (x 1)( y 1) = xy y x 1. Произведение увеличилось на 2011, то есть y x 1= 2011 или y x = 2012 . Если же первый множитель уменьшить на 1, а второй увеличить на 1, получится (x 1)( y 1) = xy y x 1. Заметим, что xy y x 1= xy ( y x) 1= xy 2012 1= xy 2013 . То есть произведение уменьшилось на 2013. 2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения (
|| − ||
) ∙ (
|| − ||
) ∙ (
|| − ||
) ответ. 0. Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок, равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых чисел x, y и z обязательно найдутся либо два положительных числа, либо два отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все произведение равно нулю. 3. Сравнить числа: 9 9 100 1 . . . 5 2 5 3 1 5 1 5 2 1 5 0 5 1 1 и 100 1 . ответ обосновать! ответ. Числа равны. Решение. Справедливо равенство 1 1 1 ( 1) 1 n n n n . Применяя его к сумме дробей, получим 100 1 100 1 5 0 1 100 1 9 9 1 . . . 5 2 1 5 1 1 5 1 1 5 0 1 . 4. Сумма двух положительных чисел и сумма их кубов являются рациональными числами. Можно ли утверждать, что а) сами числа рациональны? б) сумма их квадратов рациональна? ответ. а) Нет. б) Да, можно. Указание. а) В качестве примера можно взять числа a 2 1, b 2 1 . б) Пусть числа x a b и 3 3 y a b рациональны. Тогда 3 ( ) 3 3 3 x a b ab a b = y 3x ab. Отсюда x x y ab 3 3 – рациональное число. Поэтому число a b (a b) 2ab 2 2 2 также рационально.
1. Если в произведении двух чисел первый множитель увеличить на 1, а
второй уменьшить на 1, то произведение увеличится на 2011. Как
изменится произведение исходных чисел, если, наоборот, первый
множитель уменьшить на 1, а второй увеличить на 1?
ответ. Уменьшится на 2013.
Решение. Пусть изначально были числа x и y (с произведением xy ). После того как
первый множитель увеличили на 1, а второй уменьшили на 1, получилось
(x 1)( y 1) = xy y x 1.
Произведение увеличилось на 2011, то есть y x 1= 2011 или y x = 2012 . Если же
первый множитель уменьшить на 1, а второй увеличить на 1, получится
(x 1)( y 1) = xy y x 1.
Заметим, что
xy y x 1= xy ( y x) 1= xy 2012 1= xy 2013 .
То есть произведение уменьшилось на 2013.
2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения
(
||
−
||
) ∙ (
||
−
||
) ∙ (
||
−
||
)
ответ. 0.
Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок,
равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если
x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых
чисел x, y и z обязательно найдутся либо два положительных числа, либо два
отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все
произведение равно нулю.
3. Сравнить числа:
9 9 100
1
. . .
5 2 5 3
1
5 1 5 2
1
5 0 5 1
1
и
100
1
. ответ обосновать!
ответ. Числа равны.
Решение. Справедливо равенство
1
1 1
( 1)
1
n n n n
. Применяя его к сумме дробей,
получим
100
1
100
1
5 0
1
100
1
9 9
1
. . .
5 2
1
5 1
1
5 1
1
5 0
1
.
4. Сумма двух положительных чисел и сумма их кубов являются
рациональными числами. Можно ли утверждать, что
а) сами числа рациональны? б) сумма их квадратов рациональна?
ответ. а) Нет. б) Да, можно.
Указание. а) В качестве примера можно взять числа
a 2 1, b 2 1 .
б) Пусть числа
x a b
и
3 3
y a b
рациональны. Тогда
3 ( )
3 3 3
x a b ab a b = y 3x ab.
Отсюда
x
x y
ab
3
3
– рациональное число. Поэтому число
a b (a b) 2ab 2 2 2
также
рационально.