Если ученик первую часть пути от дома до школы идет шагом, а остальную часть пути бежит (части неизвестны), то на весь путь он тратит 22 мин. Если же ученик первую часть этого пути бежит, а остальную часть пути идет шагом, то на весь путь он тратит 16 мин. За какое время ученик доберется от дома до школы, если половину этого пути он будет идти шагом, а другую половину пути будет двигаться бегом?
Объяснение:
За 24 мин ученик добереться до школи.
Відповідь:
19 минут.
Пояснення:
Пусть часть пути А ученик идет пешком, а часть пути В - бежит, то на весь путь ( А + В ) он тратит 22 минуты. Если ученик бежит часть А, а часть В - идет, то тратит на весь путь 16 минут.
На дорогу туда и обратно ученик тратит 22 + 16 = 38 минут, при этом он проходит часть А - туда, а часть В - обратно ( в сумме весь путь ) и пробегает часть В - туда и часть А - обратно ( в сумме весь путь ).
Значит на преодоление половины пути шагом и половины пути бегом ученику понадобится 38 / 2 = 19 минут. Что соответствует среднему арифметическому двух времен.
Уравнение:
V1 - скорость шагом
V2 - скорость бегом
А - расстояние 1 части
В - расстояние 2 части
А × V1 + B × V2 = 22
B × V1 + A × V2 = 16
Сложим два уравнения.
V1 × ( A + B ) + V2 × ( A + B ) = 22 + 16 = 38
Нам надо найти время, за которое ученик пройдет и пробежит расстояние ( А + В ) / 2. Оазделим обе части уравнения на 2.
V1 × ( A + B ) / 2 + V2 × ( A + B ) / 2 = 38 / 2 = 19 минут.