Экзаменационный билет содержит 3 вопроса вероятность того,что студент ответит на 1и2 вопрос 0,9, на третий 0,8. найдите вероятность того,что студент сдаст экзамен если для этого надо ответить хотя бы на 2 вопроса
Событие А: студент ответит на 1 и 2 вопросы и не ответит на 3 вопрос: P(A)=0,9*0,9*(1-0,8)=0,162 Событие B: студент ответит на 1 и 3 вопросы и не ответит на 2 вопрос: P(B)=0,9*(1-0,9)*0,8=0,072 Событие С: студент ответит на 2 и 3 вопросы и не ответит на 1 вопрос: P(C)=(1-0,9)*0,9*0,8=0,072 Событие D: студент ответит на все вопросы P(D)=0,9*0,9*0,8=0,648 Вероятность того, что студент сдаст экзамен равна сумме вероятностей: P=P(A)+P(B)+P(C)+P(D)=0,162+0,072+0,072+0,648=0,954 или 95,4% Можно быть уверенным, что экзамен будет сдан.
P(A)=0,9*0,9*(1-0,8)=0,162
Событие B: студент ответит на 1 и 3 вопросы и не ответит на 2 вопрос:
P(B)=0,9*(1-0,9)*0,8=0,072
Событие С: студент ответит на 2 и 3 вопросы и не ответит на 1 вопрос:
P(C)=(1-0,9)*0,9*0,8=0,072
Событие D: студент ответит на все вопросы
P(D)=0,9*0,9*0,8=0,648
Вероятность того, что студент сдаст экзамен равна сумме вероятностей:
P=P(A)+P(B)+P(C)+P(D)=0,162+0,072+0,072+0,648=0,954 или 95,4%
Можно быть уверенным, что экзамен будет сдан.