Довести тотожність cos⁡〖π/19+cos⁡〖3π/19+cos⁡〖5π/19+⋯+cos⁡〖17π/19=1/2〗 〗 〗 〗

Vanek041005 Vanek041005    2   03.09.2019 14:40    3

Ответы
ananimka456 ananimka456  06.10.2020 14:58
В силу формулы \displaystyle\cos\alpha \sin\beta=\frac{1}{2}\left(\sin(\alpha+\beta)-\sin(\alpha-\beta)\right) верна цепочка равенств:
\displaystyle \cos\frac{\pi}{19}\sin \frac{\pi}{19}=\frac{1}{2}\sin \frac{2\pi}{19},
\displaystyle \cos\frac{3\pi}{19}\sin \frac{\pi}{19}=\frac{1}{2}\left(\sin \frac{4\pi}{19}-\sin\frac{2\pi}{19}\right),
\displaystyle \cos\frac{5\pi}{19}\sin \frac{\pi}{19}=\frac{1}{2}\left(\sin \frac{6\pi}{19}-\sin\frac{4\pi}{19}\right),
                    ................................

\displaystyle \cos\frac{15\pi}{19}\sin \frac{\pi}{19}=\frac{1}{2}\left(\sin \frac{16\pi}{19}-\sin\frac{14\pi}{19}\right),
\displaystyle \cos\frac{17\pi}{19}\sin \frac{\pi}{19}=\frac{1}{2}\left(\sin \frac{18\pi}{19}-\sin\frac{16\pi}{19}\right).
Сложим почленно эти равенства. В левой части получается
\displaystyle \left(\cos\frac{\pi}{19}+\cos\frac{3\pi}{19}+\ldots+\cos\frac{15\pi}{19}+\cos\frac{17\pi}{19}\right)\sin \frac{\pi}{19}, а в правой все слагаемые сокращаются, кроме \displaystyle\sin \frac{18\pi}{19}=\sin \frac{\pi}{19}, которое сокращается с таким же множителем в левой части. Отсюда
\displaystyle\cos\frac{\pi}{19}+\cos\frac{3\pi}{19}+\ldots+\cos\frac{15\pi}{19}+\cos\frac{17\pi}{19}=\frac{1}{2}.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра