Докажите тождество: sin(a-b)*cos b+cos(a-b)*sin b/cos(a-b)*cosb-sin(a-b)*sinb =tga

sacha0457 sacha0457    2   15.09.2019 04:30    4

Ответы
FrankAnDWay FrankAnDWay  07.10.2020 16:11
Очевидно, что левая часть сложнее правой. Поэтому левую будем сводить к правой.
(sin(a-b)cosb+cos(a-b)sinb)/(cos(a-b)cosb-sin(a-b)sinb)=((sinacosb-sinbcosa)cosb+(cosacosb+sinasinb)sinb)/((cosacosb+sinasinb)cosb-(sinacosb-sinbcosa)sinb)=(sinacos^2(b)-sinbcosbcosa+sinbcosbcosa+sinasin^2(b))/(cosacos^2(b)+sinasinbcosb-sinacosbsinb+sin^2(b)cosa)=(sinacos^2(b)+sinasin^2(b))/(cosacos^2(b)+sin^2(b)cosa)=(sina(cos^2(b)+sin^2(b))/cosa(cos^2(b)+sin^2(b))=tga
Ч Т Д.
ПОКАЗАТЬ ОТВЕТЫ