Докажите, что при всех целых n значение выражения: 1) n (n-1) - (n+3) (n+2) делится на 6; 2) n (n+5) - (n-3) (n+2) делится на 6. !

Akureyri Akureyri    3   07.06.2019 00:40    0

Ответы
Papyas3 Papyas3  06.07.2020 22:46
Раскроем скобки:
1) n(n-1)-(n+3)(n+2)=n²-n-n²-3n-2n-6=-6n-6=-6(n+1)
2) n(n+5)-(n-3)(n+2)=n²+5n-n²+3n-2n+6=6n+6=6(n+1)
т.к. один из множителей делится на 6, то и произведение делится на 6, т.е. данные выражения делятся на 6 при любом n
ПОКАЗАТЬ ОТВЕТЫ
Вупсінь Вупсінь  06.07.2020 22:46
1)= n^-n-n^-2n-3n-6=-6n-6=6(-n-1)-если один из множителей делится на 6, то и произведение делится на 6;
2)=n^+5n-n^-2n+3n+6=6n+6=6(n+1)-правило тоже;
(^-это квадрат)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра