Докажите что при любых значениях b верно неравенство: a) (b-3)²> b(b-6) б)b²+10> или равно2(4b-3)

dimatitov1428dimasik dimatitov1428dimasik    1   14.06.2019 11:20    7

Ответы
erdanabekok erdanabekok  12.07.2020 01:47
a) (b-3)^2b(b-6)\\
b^2-6b+9b^2-6b\\
b^2-6b+9-b^2+6b0\\
90\\
\\
b) b^2+10 \geq 2(4b-3)\\
b^2+10 \geq 8b-6\\
b^2+10-8b+6 \geq 0\\
b^2-8b+16 \geq 0\\
(b-4)^2 \geq 0
так как любое число до квадрата дает положительное число, то в б) при любых b неравенство всегда буде больше или равно нулю
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра