Докажите что последовательность натуральных чисел которые при делении на k в остатке r является арифметической прогрессии с разностью k

km73283 km73283    1   04.06.2019 20:20    0

Ответы
Mandarinka0001 Mandarinka0001  05.07.2020 16:21
В общем, это очевидно.

Условие сравнимости числа A по модулю k с r можно написать в виде
A = nk + r, где n = 0, 1, 2... (если r > 0)

Это условие задаёт ар.пр., т.к. разность между соседними числами, отвечающими значениям n + 1 и n равна k:

A(n+1) - A(n) = (nk + k + r) - (nk + r) = k
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Алгебра