N(n-1)²/(n-2)+n(n²-3)/(n-2)-2n/(n-2)= =n(n²-2n+1)/(n-2)+(n³-3n)/(n-2) -2n/(n-2)= =(n³-2n²+n)/(n-2)+(n³-3n)/(n-2)-2n/(n-2)= =(n³-2n²+n+n³-3n-2n)/(n-2)= =(2n³-2n²-4n)/(n-2)= =2n(n²-n-2)/(n-2)= =2n(n-2)(n+1)/(n-2)= =2n(n+1) Výraz n(n+1) je sudý a proto je dělitelný dvěma.Pak výraz 2n(n+1) je dělitelný 4.
=n(n²-2n+1)/(n-2)+(n³-3n)/(n-2) -2n/(n-2)=
=(n³-2n²+n)/(n-2)+(n³-3n)/(n-2)-2n/(n-2)=
=(n³-2n²+n+n³-3n-2n)/(n-2)=
=(2n³-2n²-4n)/(n-2)=
=2n(n²-n-2)/(n-2)=
=2n(n-2)(n+1)/(n-2)=
=2n(n+1)
Výraz n(n+1) je sudý a proto je dělitelný dvěma.Pak výraz 2n(n+1)
je dělitelný 4.